Finite dimensional Kadomtsev-Petviashvili τ-functions. I. Finite Grassmannians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Models for the Finite-Dimensional Grassmannians

Let Mn be a linear hyperplane arrangement in IR. We define finite posets Gk(M) and Vk(M) of oriented matroids associated with this, which approximate the Grassmannian Gk(IR) and the Stiefel manifold Vk(IR), respectively. The basic conjectures are that the “OM-Grassmannian” Gk(M) has the homotopy type of Gk(IR), and that the “OM-Stiefel bundle” ∆π : ∆Vk(M) −→ ∆Gk(M) is a surjective map. These co...

متن کامل

Kadomtsev-Petviashvili equation

Here u = u(x, y, t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and σ2 = ±1. The case σ = 1 is known as the KPII equation, and models, for instance, water waves with small surface tension. The case σ = i is known as the KPI equation, and may be used to model waves in thin films with high surfa...

متن کامل

Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations

We comment on traveling wave solutions and rational solutions to the 3+1 dimensional Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show that both of the 3+1 dimensional KP equations do not possess the three-soliton solution. This suggests that none of the 3+1 dimensional KP equations should be integrable, and partially explains why they do not pass the Pa...

متن کامل

Finite Subsets of Grassmannians

Let A be a subvariety of affine space A whose irreducible components are d-dimensional linear or affine subspaces of A. Denote by D(A) ⊂ N the set of exponents of standard monomials ofA. Using the Hilbert function, we show thatD(A) contains as many subspaces of dimension d as A contains irreducible components. We refine this result in various ways. Firstly, we specify the directions into which ...

متن کامل

Numerical simulation of Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equations using finite difference method

Keywords: KP–BBM-II equations Crank–Nicholson method Finite difference scheme Convergence Stability a b s t r a c t In this paper, the finite difference method is employed to solve Kadomtsev–Petviashvili– Benjamin–Bona–Mahony II (KP–BBM-II) partial differential equations. The time and space variable are discretized by the Crank–Nicholson method and the central-difference scheme, respectively. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2014

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4890818